# Violarvensin, a New Flavone Di-C-glycoside from Viola arvensis

André-Paul Carnat, Andrée Carnat, Didier Fraisse, and Jean-Louis Lamaison\*

Laboratoire de Pharmacognosie et Phytothérapie, Faculté de Pharmacie, Université d'Auvergne, 28 place Henri Dunant, F-63000 Clermont-Ferrand, France

## Annie Heitz

CBS, CNRS INSERM, Faculté de Pharmacie, Université de Montpellier I, 15 avenue Charles Flahault, F-34060 Montpellier Cédex 1, France

# Renée Wylde

URA 1845, Faculté de Pharmacie, Université de Montpellier I, 15 avenue Charles Flahault, F-34060 Montpellier Cédex 1, France

### Jean-Claude Teulade

Laboratoire de Chimie Organique, Faculté de Pharmacie, Université d'Auvergne, 28 place Henri Dunant, F-63000 Clermont-Ferrand, France

#### Received March 3, 1997

A new flavonoid di-C-glycoside, violarvensin (1), was isolated from the aerial parts of *Viola arvensis*, together with the known derivative violanthin (2). The structure of 1 was established as apigenin-6-C- $\beta$ -D-glucopyranosyl-8-C- $\beta$ -D-6-deoxygulopyranoside by spectral analysis.

The wild pansy *Viola arvensis* Murray (Violaceae), closely related to *Viola tricolor* L., is a very common species found in open and cultivated land in Europe.<sup>1</sup> It was described by early authors as a variety or subspecies of *V. tricolor*.<sup>2</sup> In traditional medicine, the herb has been used as an expectorant, a diuretic, and an antiinflamatory for bronchitis, rheumatism, skin eruptions, and eczema. Its properties are ascribed to the presence of mucilage, salicylic derivatives, and flavonoids.<sup>3</sup> The main flavonoid in *V. arvensis* was reported to be rutin.<sup>4</sup> This compound<sup>5</sup> and also several flavone C-glycosides—violanthin,<sup>6</sup> vitexin, saponaretin, orientin, isoorientin, and vicenin-2,<sup>7</sup>—were found in *V. tricolor*.

As part of an on-going study of French medicinal plants, we report here the isolation of a new apigenin di-C-glycoside, together with the known flavonoid, violanthin, from *V. arvensis*. The structure of the new compound (1), which was named violarvensin, was determined from spectroscopic evidence.

The MeOH extract of the aerial parts of *V. arvensis* was chromatographed on a polyamide column, and the flavonoid-containing fractions were further purified on a Sephadex LH-20 column to afford compounds **1** and **2**. Compound **2** was identified as violanthin (apigenin-6-C- $\beta$ -D-glucopyranosyl-8-C- $\alpha$ -L-6-rhamnopyranoside) by comparison of its <sup>13</sup>C-NMR spectra with literature data.<sup>8</sup>

Like that of **2**, the UV spectrum of **1** showed characteristic flavone absorptions at 272 and 336 nm, and **1** was resistant to acidic hydrolysis (HCl 2 N, 100 °C, 2 h), suggesting a C-glycoside structure.

The FABMS of **1** showed an ion peak at m/z 579 [M + H]<sup>+</sup> in the high mass region, corresponding to a



molecular weight of 578. The molecular formula  $C_{27}H_{31}O_{14}$  was deduced from the pseudomolecular ion at m/z 579.1714 on the HRFABMS.

The <sup>1</sup>H-NMR spectrum of compound **1** confirmed the presence of a flavone skeleton characterized by two doublet signals at  $\delta$  6.89 and 8.09 assigned to H-3', H-5' and H-2', H-6', respectively, and a singlet at  $\delta$  6.77 (H-3) (Table 1). In addition, the absence of signals for H-6 and H-8, the presence of two anomeric sugar protons at  $\delta$  4.70 and 5.56, and the <sup>13</sup>C chemical shift of anomeric carbons ( $\delta$  73.6 and 63.6) indicated a 6,8-di-C-glycosyl apigenin structure.

In the HMBC spectrum of **1**, correlations were observed between H-1" and C-5, C-6, and C-7 and between H-1"" and C-7, C-8, and C-9; thus, the two sugar moieties were attached to C-6 and C-8, respectively, as in **2**. The sugars were identified from COSY, TOCSY, HMQC, and HMBC spectra in conjunction with the magnitude of the  $^{1}\text{H}-^{1}\text{H}$  vicinal coupling constants. As for **2**, the NMR data obtained for **1** showed that glucose was bound to C-6. For the second hexose residue, the anomeric proton at  $\delta$  5.56 was coupled to a proton at  $\delta$ 

S0163-3864(97)00148-1 CCC: \$15.00

<sup>\*</sup> To whom correspondence should be addressed. Phone:  $\pm$  33 473608026. Fax:  $\pm$  33 473282849.

|                    | 1                |                       |                           |               | 2                |                 |                           |
|--------------------|------------------|-----------------------|---------------------------|---------------|------------------|-----------------|---------------------------|
|                    | $\delta_{\rm C}$ | $\delta_{\mathrm{H}}$ | multiplicity <sup>a</sup> |               | $\delta_{\rm C}$ | $\delta_{ m H}$ | multiplicity <sup>a</sup> |
| apigenin           |                  |                       |                           | apigenin      |                  |                 |                           |
| 2                  | 163.6            |                       |                           | 2             | 163.3            |                 |                           |
| 3                  | 102.2            | 6.77                  | S                         | 3             | 102.7            | 6.81            | S                         |
| 4                  | 182.2            |                       |                           | 4             | 182.2            |                 |                           |
| 5                  | 159.3            |                       |                           | 5             | 160.0            |                 |                           |
| 6                  | 108.4            |                       |                           | 6             | 109.1            |                 |                           |
| 7                  | 163.6            |                       |                           | 7             | 162.5            |                 |                           |
| 8                  | 104.4            |                       |                           | 8             | 102.7            |                 |                           |
| 9                  | 154.7            |                       |                           | 9             | 153.1            |                 |                           |
| 10                 | 102.4            |                       |                           | 10            | 103.0            |                 |                           |
| 1′                 | 121.4            |                       |                           | 1′            | 121.2            |                 |                           |
| 2′                 | 129.0            | 8.09                  | d (8.4)                   | 2′            | 128.5            | 7.91            | d (8.5)                   |
| 3′                 | 116.0            | 6.89                  | d (8.4)                   | 3′            | 116.0            | 6.95            | d (8.5)                   |
| 4'                 | 161.2            |                       |                           | 4'            | 161.3            |                 |                           |
| 5′                 | 116.0            | 6.89                  | d (8.4)                   | 5′            | 116.0            | 6.95            | d (8.5)                   |
| 6′                 | 129.0            | 8.09                  | d (8.4)                   | 6'            | 128.5            | 7.91            | d (8.5)                   |
| 6-C-glucosyl       |                  |                       |                           | 6-C-glucosyl  |                  |                 |                           |
| 1‴                 | 73.6             | 4.70                  | d (9.5)                   | 1″ ້          | 73.1             | 4.62            | d (9.8)                   |
| 2″                 | 70.9             | 3.90                  | dd (9.5; 9.5)             | 2″            | 70.1             | 4.08            | dd (9.8; 9.0)             |
| 3″                 | 78.7             | 3.26                  | dd (9.5; 9.5)             | 3″            | 79.0             | 3.21            | dd (9.0; 9.0)             |
| 4″                 | 70.1             | $3.25^{b}$            |                           | 4″            | 70.7             | 3.12            | dd (9.0; 9.0)             |
| 5″                 | 81.5             | $3.25^{b}$            |                           | 5″            | 81.7             | 3.16            | ddd (9.0; 4.0; 1.2)       |
| 6″                 | 60.9             | 3.70                  | dd (11.2; < 1)            | 6″            | 61.5             | 3.70            | dd (11.2; 1.2)            |
|                    |                  | 3.52                  | dd (11.2; 4.5)            |               |                  | 3.42            | dd (11.2; 4.0)            |
| 8-C-6-deoxygulosyl |                  |                       |                           | 8-C-rhamnosyl |                  |                 |                           |
| 1‴′′               | 63.6             | 5.56                  | d (10.0)                  | 1‴            | 75.0             | 5.26            | S                         |
| 2‴                 | 65.9             | 4.24                  | dd (10.0; 2.0)            | 2‴            | 72.3             | 3.90            | d (2.6)                   |
| 3‴                 | 71.6             | 3.94                  | dd (2.0; 4.0)             | 3‴            | 74.2             | 3.60            | dd (2.6; 9.0)             |
| 4‴′′               | 72.0             | $3.71^{c}$            | d (4.0)                   | 4‴            | 71.8             | 3.40            | dd (9.0; 9.0)             |
| 5‴                 | 74.8             | 4.04 <sup>c</sup>     | q (7.2)                   | 5‴            | 77.3             | 3.45            | dq (9.0; 6.0)             |
| 6‴                 | 16.2             | 1.44                  | d (7.2)                   | 6‴            | 18.2             | 1.28            | d (6.0)                   |

Table 1. NMR Data (DMSO-d<sub>6</sub>) for 1 and 2

<sup>a</sup> Coupling constants J (in Hz) are in parentheses. <sup>b</sup> Signal patterns unclear due to overlapping. <sup>c</sup> J (4<sup>'''</sup>-5<sup>'''</sup>) # 0.

4.24 (dd, J = 10.0, 2.0 Hz), corresponding to H-2<sup>'''</sup>. In the COSY spectrum, a cross peak was observed between H-2<sup>'''</sup> and a resonance at  $\delta$  3.94 (dd, J = 2.0, 4.0 Hz). On the basis of the large coupling constant (10.0 Hz) between H-1<sup>'''</sup> and H-2<sup>'''</sup>, the two protons were established as axial and the configuration of the sugar as  $\beta$ . On the other hand, the configuration of H-3<sup>'''</sup> was indicated to be equatorial. The correlations observed between H-3<sup>'''</sup> and a resonance at  $\delta$  3.71 (d, J = 4.0 Hz), between the resonance at  $\delta$  3.71 and 4.04 (q, J = 7.2Hz) and between the resonance at  $\delta$  4.04 and 1.44 (d, J = 7.2 Hz) permitted the assignments of H-4<sup>'''</sup>, H-5<sup>'''</sup>, and Me-6<sup>'''</sup>, respectively. Thus, a 6-deoxy- $\beta$ -hexose is proposed.

Acetylation of **1** gave a decaacetate, the NMR spectrum of which showed large downfield shifts of the H-2<sup>'''</sup>, H-3<sup>'''</sup>, and H-4<sup>'''</sup> protons of the 6-deoxy- $\beta$ -hexose unit. The chemical shifts of H-3<sup>'''</sup>, H-4<sup>'''</sup>, and H-5<sup>'''</sup> and the magnitude of all vicinal proton coupling constants are similar to those reported for 1,2,3,4-tetra-*O*-acetyl-6-deoxy- $\beta$ -D-gulopyranoside.<sup>9</sup> Thus the second hexose in **1** was identified as 6-deoxy- $\beta$ -D-gulopyranoside, and the structure of **1** was determined, in accordance with the molecular formula deduced from the HRFABMS, to be apigenin-6-C- $\beta$ -D-glucopyranosyl-8-C- $\beta$ -D-6-deoxygulopyranoside.

Although the overall <sup>13</sup>C-NMR data obtained for **2** are similar to those reported in the literature, the reassignment of three chemical shifts is proposed on the basis of COSY and HMQC experiments. The correct assignments for C-1<sup>'''</sup>, C-2<sup>'''</sup>, and C-5<sup>'''</sup> are  $\delta$  75.0, 72.3, and 77.3, respectively. Literature values<sup>8</sup> were given as  $\delta$  77.3, 75.0, and 72.2, respectively.

This is the first report of a flavonoid glycoside containing 6-deoxy-D-gulose in its sugar moiety. This sugar, also known as antiarose, rarely occurs in the plant kingdom, being previously described only in some cardenolide glycosides from *Antiaris toxicaria*,<sup>10</sup> *Convallaria majalis*,<sup>11</sup> and *Cheiranthus allioni*,<sup>12</sup> and as a glycolipid constituent of *Ipomoea parasitica*.<sup>13</sup>

# **Experimental Section**

**General Experimental Procedures.** Column chromatography was carried out on a polyamide column chromatograph (ICN) and Sephadex LH-20 (Pharmacia). Elution was monitored by TLC (cellulose F<sub>254</sub> Merck) using 15% AcOH as solvent system and observation under UV at 365 nm after spraying with 2-aminoethyldiphenylborinate solution in MeOH. UV spectra were recorded on a Unicam model UV2 UV/vis spectrophotometer in MeOH. Optical rotation was measured on a JASCO model DIP 370 polarimeter. <sup>1</sup>H- and <sup>13</sup>C-NMR spectra were recorded with a Bruker AMX 360 spectrometer operating at 360.13 MHz (<sup>1</sup>H) and 90.55 (<sup>13</sup>C) using TMS as internal standard. Positive FABMS were obtained on a JEOL JMS SX-102 mass spectrometer.

**Plant Material.** The aerial parts of *V. arvensis* were collected near Orcines (Puy-de-Dôme, France) in September 1995. The plant was identified by Prof. J.-L. Lamaison, and a voucher specimen was deposited in the herbarium of the Faculty of Pharmacy, University of Auvergne.

**Extraction and Isolation.** The dried, powdered aerial parts with flowers (100 g) were extracted with

MeOH ( $2 \times 500$  mL). The concentrated extract (30 g) was dissolved in distilled H<sub>2</sub>O (100 mL) and chromatographed on a polyamide column (500 g). Elution with  $H_2O$  gave 15 fractions of 250 mL (1–15) each. Podded fractions 12-14 (80 mg) were chromatographed on two successive columns on Sephadex LH-20 (50 g) with H<sub>2</sub>O as elution solvent, giving 17 mg of 1. Combined fractions 5-7 (110 mg) were purified analogously on Sephadex LH-20, giving 21 mg of **2**.

**Violarvensin (1):** vellow amorphous powder;  $R_f 0.45$ ;  $[\alpha]^{25}$ <sub>D</sub> +14° (*c* 0.7, MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\epsilon$ ) 272 (4.09), 336 (4.37); positive FABMS m/z [M + H]<sup>+</sup> 579,  $[M + Na]^+$  601; HRFABMS  $[M + H]^+$  579.1714 (calcd for C<sub>27</sub>H<sub>31</sub>O<sub>14</sub>, 579.1714); <sup>1</sup>H- and <sup>13</sup>C-NMR data, see Table 1.

Acetylation of 1. A solution of 1 (3 mg) in a mixture of Ac<sub>2</sub>O (0.5 mL) and pyridine (0.5 mL) was allowed to stand at room temperature overnight and evaporated to dryness in vacuo to yield violarvensin decaacetate: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.98 (2H, H-2', H-6', d, J = 8.7 Hz), 7.24 (2H, H-3', H-5', d, J = 8.7 Hz), 6.50 (1H, H-3, s), 5.85 (1H, H-2<sup>'''</sup>, dd, J = 10.2, 2.9 Hz), 5.68 (1H, H-2<sup>''</sup>, dd, J = 9.7, 9.7 Hz), 5.44 (1H, H-3", dd, J = 2.9, 3.2 Hz), 5.31 (1H, H-3", dd, J = 9.7, 9.7 Hz), 5.27 (1H, H-1"", d, J = 10.2 Hz), 5.16 (1H, H-4", dd, J = 9.7, 9.7 Hz), 4.89 (1H, H-1", d, J = 9.7 Hz), 4.88 (1H, H-4"", d, J =3.2 Hz), 4.45 (1H, H-6", dd, J = 12.7, 5.0 Hz), 4.28 (1H, H-5"", q, J = 7.2 Hz), 3.96 (1H, H-6", dd, J = 12.7, 1.5 Hz), 3.82 (1H, H-5", ddd, J = 9.7, 5.0, 1.5 Hz), 1.51 (3H, H-6<sup> $\prime\prime\prime$ </sup>, d, J = 7.2 Hz), 2.48, 2.32, 2.22, 2.06, 2.05, 2.04, 2.01, 1.89, 1.84, and 1.76 (each 3H, s,  $-OAc \times 10$ ).

**Violanthin (2):** yellow amorphous powder;  $R_f 0.55$ ; UV (MeOH)  $\lambda_{max}$  (log  $\epsilon$ ) 272 (4.16), 336 (4.45); <sup>1</sup>H- and <sup>13</sup>C-NMR data. see Table 1.

Acknowledgment. We are grateful to Dr. M. Renard (CNRS, UMR SEESIB, Université Blaise Pascal, Clermont-Ferrand, France) for optical rotation data and Mr. R. Astier (Université Montpellier II, France) for FABMS measurements.

#### **References and Notes**

- (1) Tutin, T. G.; Heywood, V. H.; Burges, N. A.; Moore, D. M.; Valentine, D. H.; Walters, S. M.; Webb, D. A. *Flora Europaea*; University Press: Cambridge, 1968; Vol. 2, p 281.
- (2) Perrot, E.; Paris, R. *Les Plantes Médicinales*; Presses Universi-taires de France: Paris, 1971; Vol. 2, p 175.
- Wren, R. C.; Williamson, E. M.; Evans, F. J. Potter's New Cyclopedia of Botanical Drugs and Preparations; C. W. Daniel: (3)Saffron Walden, 1988; p 139. (4) Kolos-Pethes, E. *Acta Pharm. Hung.* **1965**, *35*, 225–230.
- Gertig, H.; Kowalewski, Z.; Jegier, E.; Prywer, M. Herba Pol. (5) **1966** 12 273-283
- (6) Hörhammer, L.; Wagner, H.; Rosprim, L.; Mabry, T.; Rösler, H. Tetrahedron Lett. 1965, 22, 1707–1711
- Wagner, H.; Rosprim, L.; Düll, P. Z. Naturforsch. 1972, 27B, (7)954 - 958
- (8) Markham, K. R.; Chari, V. M. In The Flavonoids: Advances in Research; Harborne, J. B., Mabry, T. J., Ed.; Chapman & Hall: London, 1982; pp 29, 48.
- (9) Capek, K.; Tikal, I.; Jary, J.; Masojidkova, M. Collect. Czech. Chem. Commun. 1971, 36, 1973-1985.
- (10)Juslen, C.; Wehrli, W.; Reichstein, T. Helv. Chim. Acta 1962, 45. 2285-2296.
- (11) Kubelka, W.; Sikl, D. Pharmazie 1967, 22, 724.
- (12) Makarevich, I. F.; Pavlii, A. I.; Makarevich, S. I. Khim. Prir. Soedin. 1989, 1, 73–75.
- Smith, C. R.; Niece, L. H.; Zobel, H. F.; Wolff, I. A. Phytochem-(13)istry 1964, 3, 289-299.

NP9701485